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The fundamental postulate of continuum mechanics states that a body is a 
three-dimensional differentiable manifold and its motions are diffeomorphisms. 
Simple thought experiments with cyclic motions of dislocations show that they 
do not preserve topology (set of neighborhoods). The same is valid for chaotic 
and turbulent motions with coarse-graining. To describe such motions, kinematics 
of a generalized continuum mechanics is suggested. Observables are defined 
operationally in the laboratory system which is not anymore equivalent to the 
Lagrangian picture. The body is a submanifold of a higher-dimensional space 
and generalized motions are its diffeomorphisms. In a gauge-theoretic interpreta- 
tion, the motion is a translational connection with the curvature identified as a 
"dislocation" density-flux. 

1. I N T R O D U C T I O N  

Elas t ic i ty  and  plas t ic i ty ,  f rac ture  and  v iscoplas t ic i ty ,  l a mina r  and  tur-  
bu len t  flows a r e  qui te  different  phys ica l  p h e n o m e n a ,  bu t  they  have a 
c o m m o n  d e n o m i n a t o r  in the i r  ma thema t i ca l  desc r ip t ion :  k inemat ics  o f  a 
c o n t i n u u m  med ium.  In the  scope  o f  c o n t i n u u m  mechan ics  any b o d y  is 
cons ide r ed  as a (mate r ia l )  t h r ee -d imens iona l  mani fo ld .  Its mo t ion  is a 
t i m e - d e p e n d e n t  f ami ly  o f  d i f f eomorph i sms  comple t e ly  cha rac te r i zed  by  
bas ic  k inema t i c  fields: veloci ty ,  d e f o r m a t i o n  grad ien t ,  s t rain,  etc. As a result ,  
the  m o t i o n  preserves  t o p o l o g y  o f  the  b o d y  (close po in ts  r emain  close)  and  
there  are  two equ iva len t  desc r ip t ions :  with respect  to a reference  state 
(mate r i a l  or  Lag rang ian )  and  with respec t  to a cur rent  state ( spa t ia l  or  
Eu le r i an) .  Divers i ty  o f  the  m e n t i o n e d  p h e n o m e n a  is ref lected in const i tu t ive  
laws a n d  some  a d d i t i o n a l  fields such as p las t ic  s t rain,  damage ,  etc~ 

His to r ica l ly ,  the  first ma thema t i ca l  mode l s  were d e v e l o p e d  for  elas- 
t ic d e f o r m a t i o n s  and  l a m i n a r  flows. Desc r ip t ion  o f  these  mo t ions  as 
d i f f e o m o r p h i s m s  and  o f  the  bod i e s  as d i f ferent iab le  man i fo lds  is comple t e ly  
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adequate physically. On the other hand, extension of  these mathematical 
models to plastic, turbulent, mixing motions is conceptually troubling and 
may be justified by arguments of mathematical convenience only: if motion 
is not a diffeomorphism, then what is it? 

The purpose of  this paper is to show that mixing-type motions 
which do not preserve (three-dimensional) topology may be described as 
diffeomorphisms of  an extended phase space and thus a body still is a 
material manifold, but of  a higher dimension. In Section 2, the basic notions 
of  classical continuum mechanics (in a space-time form) are briefly outlined. 
In Section 3, thought experiments with cyclic motions of dislocations in an 
ideal crystal are considered. The motions visually illustrate a phenomenon 
of perestroika: initially neighboring atoms travel far from each other, though 
the crystal remains ideal. In this sense, the motions do not preserve the 
topology (the set of neighborhoods) of  the crystal. The same is valid for 
chaotic (turbulent) motions. Formally, they~are described as families of  
diffeomorphisms, but the slightest coarse-graining does not preserve the 
topology. Basic problems are formulated: how to describe such motions in 
the scope of  continuum mechanics, what are the defining measurable observ- 
ables, what is a body, what is the role of  coarse-graining? 

In Section 4, an outline of  kinematics of a generalized continuum 
mechanics (GCM) is given. The basic observables of GCM admit oper- 
ational definitions in the laboratory system. Only the current state has a 
definite physical meaning, and the Eulerian and Lagrangian pictures are 
not equivalent anymore. The body is a material manifold, but of a higher 
dimension and motions are its diffeomorphisms. 

In Section 5, a gauge-theoretic approach is considered. Motions in 
GCM are identified with a translational connection. The corresponding 
curvature has the meaning of a dislocation density-flux. Coarse-graining as 
a bridge between mixing (turbulent) motions and GCM is discussed in the 
last section. 

2. KINEMATICS IN CLASSICAL CONTINUUM MECHANICS 

Continuum mechanics (CM) identifies a body ~ with a three- 
dimensional differentiable manifold, and motions are families of time- 
dependent  diffeomorphisms X, of ~ into the Euclidean space E3 (see, e.g., 
Truesdell, 1977). Let us fix a rectilinear coordinate system in E3 and let X ~ 
and x ~ be the coordinates of  a material point X at t = 0 and its position x 
at the time t, i.e., 

X,: X->x: x i=x i (X ,  t) (2.1) 
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The basic kinematic fields are the velocity V(X, t) and the deformation 
gradient d~(X, t) 

~ } = o x i ( X ,  t) 
i (2.2, 2.3) V ~= o,x  (X, t), OX ~ 

Using absolute parallelism in E 3 these fields can be shifted from the 
initial (reference) point X to the current point x defining 

v'(x, t) = Vi(X(x, t), t), Fj(x, t) = qbj(X(x, t), t) (2.4) 

Similarly, all other fields, such as strain, stress, etc., may be considered 
as functions of X, t or x, t. It is said that the body is considered in the 
reference state (Lagrangian picture) or in the current state (Eulerian picture, 
laboratory system), respectively. It is important that the Lagrangian and 
Eulerian pictures are equivalent. 

Notice that 3+9  fields (2.3) or (2.4) are defined by 3 fields (2.1) and 
thus are not independent. The corresponding integrability conditions are 
given below. Let X = (t, X) and x = (t, x) be points of the Galilean space-time 
EG and let us introduce 4-velocity v = (1, v), 4-gradient 

and its inverse 

h (  1 0T) 
- F - %  F -1 (2.6) 

The form of h is dictated by the Galilean invariance. 
It can be shown (Kunin and Kunin, 1986) that the integrability condi- 

tion in the laboratory system has the form 

or, in components, 

12(x) ~- h(x)O A h-l(x)  = 0 (2.7) 

n~e = h'2[oo(h-'); - o ~ ( h - ' ) ~ ]  = 0 (2.8) 

where 0~ = O/Ox '~ and a , / 3 , . . .  = 0, 1, 2, 3. In the space representation, this 
is equivalent to the conditions 

VA F - l = 0 ,  (0,+v" V+Vv)F-1 =0  (2.9) 

At a point x c EG, the tensor hx defines an invertible linear transforma- 
tion of (tangent) vectors, i.e., h~ e GL(4) [more exactly, hx belongs to a 
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subgroup of matrices of the form (2.5) invariant with respect to the Galilean 
transformations]. The tensor field h(x) is an element of a group H of 
space-time-dependent linear transformations. The elements satisfying the 
integrability conditions (2.7) will be called holonomic transformations. 

The one-to-one correspondence between the motions (modulo rigid 
body translations) and holonomic transformations permits one to identify 
them and call them holonomic motions (to be distinguished from more 
general motions below). 

3. MOVING DEFECTS, DISLOCATIONS 

An important part of solid state physics and material science is devoted 
to the description of moving defects: point defects, dislocations, cracks, 
crazes, etc. At a macrolevel of CM these phenomena are modeled as 
diffusion, plasticity, damage, fracture, etc. Still, the fundamental postulate 
states that the body is a material manifold and motion is a family of its 
diffeomorphisms X, (plus motion of defects). As a result, the Lagrangian 
and Eulerian pictures remain equivalent. To examine the validity of this 
postulate, let us consider a thought experiment with cyclic dislocation fluxes. 

Figure 1 shows the result of passing of a dislocation pileup through 
an ideal crystal from the left to the right. We denote this operation by the 
arrow - .  Similarly, $, ~ ,  T denote the same motions of dislocations in the 
directions of arrows. We call the composition of the operations ~ '#$-  a cycle. 

Figure 2a shows a crystal with some of its atoms marked (others are 
not shown). Positions of the marked atoms after 2 and 4 cycles are shown 
in Figures 2b and c, respectively. For simplicity, periodic boundary condi- 
tions are assumed. In Figure 3, the marked atoms form initially a grid. 

A comment about these thought experiments should be made. If we 
assume that the marked atoms are initially true neighbors, then the corre- 
sponding dislocation density would be unrealistically high. To achieve the 
same qualitative results in the case of more realistic dislocation densities, 
the number of cycles should be greater (by a factor of 102-103). The 
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Fig. 1. The result of passing of the dislocation pileup. 
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(a) (b) (c) 
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Fig. 2. (a) A crystal  with  som e  of  its a toms  m a r k e d  (o thers  are not  Shown).  (b) After  2 cycles. 
(c) After  4 cycles�9 

conclusion is that cyclic motions of dislocations result in a phenomenon 
of mixing (perestroika) and that these effects may be important. 

As an example, one can point to metallurgical rolling (Metals Hand- 
book, 1985). At the crystallographic scale, the process qualitatively may be 
similar to that shown above. At the scale of the grains, the process results 
in curly grain structures, slip lines, deformation twins, kink bands. At the 
next microscopic scale, the characteristic features include material fibering, 
flow lines, shear bands, and Liiders lines. Finally, at the macroscopic CM 
scale, the process is described as a continuous plastic deformation and all 
information on perestroika is lost. 

An important lesson is that perestroika is intimately related to coarse- 
graining. Notice that, for the thought experiments indicated above, the 
crystal structure (or discreteness of slip lines) played the role of coarse- 
graining. After establishing a quantitative measure for perestroika, the transi- 
tion to a continuum description is possible and quite natural. On the 
contrary, assuming the dislocation flux to be continuous from the very 
beginning misses the effect of perestroika completely�9 Thus, the order of 
transitions to limits is essential. 
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Fig. 3. The  s a m e  as Figure  2, with m a r k e d  a toms  fo rming  initially the grid. 



1172 Kunin 

A similar situation arises if we want to describe mixing properties of 
a Hamiltonian system (Guckenheimer and Holmes, 1983). Let AF be the 
volume of  a phase space droplet which does not depend on time (Liouville 
theorem). If  the motion is mixing, the droplet spreads out over the phase 
space as t ~ oo. Let us assume that the phase space is e-coarse-grained and 
let A~F(t) be the corresponding coarse-grained volume of the droplet. It is 
clear that A F(t)  asymptotically increases with time. The Kolmogrov entropy 
K defined as 

K = lim lim In A~F(t) (3.1) 
E:~O t ~ 0  

is a measure of mixing. The measure does not depend on a choice of  
coarse-graining, but the order of limits is essential. 

Note that the Kolmogrov entropy K is closely related to the Liapunov 
exponent  A and the correlation time ~-. Namely, K - A - ~.-1. The computa- 
tions provided for the above cycles of ideal dislocation flows are in agree- 
ment with these estimates. 

Now we are in a position to formulate the basic problem: how do we 
incorporate perestroika-type phenomena which do not preserve topology 
(the set of  neighborhoods) into the formalism of continuum mechanics? In 
particular: what is a body, what is a motion, what are the basic measurable 
quantities? As a partial answer to these questions, we outline a mathematical 
structure for the kinematics of a generalized continuum mechanics. 

4. GENERALIZED KINEMATICS 

As a key step, let us first define measurable quantities (basic observ- 
ables). All other observables will be uniquely determined through the basic 
ones. An operational requirement: all measurable quantities must be defined 
in the laboratory system. 

We restrict ourselves to the following minimal set of basic observables: 
the mass density p(x, t), the velocity v(x, t), and the rate of deformation 
F(x,  t). It is essential that v and P are considered as independently measur- 
able quantities, for example, by an appropriate averaging of  the mass and 
momentum fluxes, respectively. Here we do not go into the details of the 
operational definitions. 

The velocity field v(x, t) defines a holonomic motion X, and the corre- 
sponding deformation gradient Fo(x, t) as a solution of the integrability 
equations (2.9) with the initial data Fo(x, 0 )=  I (unit tensor). Similarly, 
F(x,  t) defines the deformation tensor field F(x,  t) modulo initial data 
F(x,  0). Then the equation F = FoF. defines a decomposition of F into the 
holonomic Fo and nonholonomic (plastic) F . =  FolF components. It is 
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worth mentioning that v is a coarse-graining-based velocity. Therefore the 
family of  diffeomorphisms X, determined by v does not describe paths of 
material particles. 

The space-time deformation tensor field 

is identified with a (generally) nonholonomic motion or transformation. A 
measure of  nonholonomicity is given by the tensor field (compare to (2.7)) 

a ( x )  = hO ̂  h -1 (4.2) 

The time and space components of f~(x) can be identified with disloca- 
tion density and flux, respectively (Kunin and Kunin, 1986). In particular, 
F(x,  0) = P . (x ,  0) is determined by the initial dislocation density. Depending 
on the scale to which the model applies, f~ describes either dislocations in 
a crystal or macroscopic sources of plastic deformations (quasidislocations). 

There are two possible interpretations of  (4.2): first, this is the definition 
of  ~;  second, the dislocation density and flux are independently measurable 
quantities, and (4.2) is a meaningful equation whose validity has to be 
checked experimentally. 

In the scope of this kinematic model, the state of the body is completely 
defined by two space-time fields: p(x)  and h(x)  (the extended models may 
also include internal degrees of freedom as indicated below). Geometrically, 
the body B is the (4+4)-dimensional  tangent bundle TEe equipped with 
an extension of the measure p. Motions are special diffeomorphisms of TE e 
defined by h c H:  hx transforms the tangent space TxE~ at each point x ~ Ee .  

Generally, nonholonomic h(x) describe underlying microscopic 
motions in average only. For holonomic h, f~ = 0 and we return to the usual 
kinematics of CM. 

5. A GAUGE-THEORETIC APPROACH 

First, it is necessary to clarify in what sense "gauge theory" will be 
understood here. As a rule, physicists identify gauge theory (GT) with the 
Yang-Mills gauge theory (YM-GT). The characteristic feature of the YM- 
GT is the action of a group on internal degrees of freedom rather than on 
the space-time. In a more general understanding of GT, the group action 
is extended to the space-time as well, and gauge fields are related to a 
connection on a principal fiber bundle (Trautman, 1980). The fundamental 
group of  continuum mechanics is the group of affine motions acting on Ee 
and thus the gauge fields should be related to affine connections rather than 
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to the usual linear connections. Our approach follows Kunin and Kunin 
(1986). Different models are developed by Kadi6 and Edelen (1983) and 
Edelen and Lagoudas (1988). 

An affine connection on EG is a pair (V, h), where V is a linear 
connection (covariant derivative) and h = h(x) is a tensor field of  type (1, 1) 
which may be identified with the translational connection (Kobayashi and 
Nomizu, 1963). The connection (0, I )  corresponds to the usual absolute 
parallelism in Ec .  The deviation from the absolute parallelism is character- 
ized by an affine curvature ,ql = (R, S, 12). Here R(x) is the curvature of V, 
S is the torsion of V (translational component  of (V, I)) ,  and 12(x) is the 
translational curvature, i.e., the curvature of the pure translational connec- 
tion (0, h) [see (5.1) below]. The tensors S and 12 of the type (1, 2) have 
similar (but not identical) properties and there is a tendency in the literature 
to confuse them. 

From a group-theoretic point of view, it is quite natural to identify the 
translational component  h of the connection (V, h) with the motion h(x) 
introduced above. Let u, v be two arbitrary vector fields. Then the trans- 
lational curvature 12 is given by (Kunin and Kunin, 1986) 

D( u, v)= h[ (V uh-X)v - (V ~h-1)u ] (5.1) 

where Vu is the covariant derivative in the direction u. For the special 
case V=O, u=O~, v=O~, (5.1) specializes to (422). It follows that the 
translational curvature 12 can be identified with the dislocation density-flux 
(for nontrivial V). 

The curvature R and torsion S are related to the internal degrees of 
freedom: disclinations and spin dislocations which have not been considered 
above. These as well as other internal variables (microcrack density, tem- 
perature, etc.) require additional state variables and the corresponding 
extension of the kinematics. 

In the modern approach, CM is represented in a coordinate-free form 
that leads to a deeper mathematical and physical insight. Notice that 
"coordinate-free" means invariance with respect to holonomic coordinate 
transformations. The gauge approach extends essentially the invariance 
group. The requirement of invariance (covariance) with respect to a group 
G of gauge transformations is an intrinsic part of  GT. In the case of 
continuum mechanics, G can be isomorphic to H and interpreted as a 
group of moving nonholonomic frames. As a result, the equations of 
continuum mechanics can be represented in a gauge-covariant form which 
is especially useful for nonholonomic motions. 

However nice these applications of GT are, the most important contri- 
bution of  GT can be expected in the construction of complex models for 
different interacting fields. First, it is important to classify variables into 
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gauge fields and matter fields. For example, with respect to the translation 
group, motions h and dislocations 1~ are gauge fields, whereas temperature, 
damage, and electromagnetic fields in the medium are matter fields. With 
respect to other groups, the latter themselves can be Yang-Mills-type gauge 
fields. 

Second, the construction of a complex model can be split into successive 
"gaugings." For example, let us consider an elastic body as an initial model. 
Successive gaugings with respect to translations, rotations, etc., lead to the 
introduction of new kinematic variables corresponding to dislocations, spin 
dislocations, disclinations, etc. 

These examples indicate that the GT approach can be a useful heuristic 
tool in the development of new complex models. 

6. DISCUSSION 

It is shown above that the perestroika-type motions which do not 
preserve topology of the 3D body can be described in terms of smooth 
invertible mappings of an extended space. A bridge between real motions 
and their mathematical models is an appropriate coarse-graining. In connec- 
tion with this, two basic questions may be discussed. Is there any trace of 
coarse-graining in generalized kinematics? Are coarse-graining and general- 
ized kinematics applicable to different types of mixing (turbulent) motions? 

Coarse-graining of  space-time is characterized by two (small) scales: 
time r and length I. Mathematical models taking into account the existence 
of these elementary scales deal with a quasicontinuum (quantized space- 
time) rather than with the usual space-time (Kunin, 1980, 1982). In this 
case an admissible class of (analytic) functions automatically takes care of 
elementary scales. Another situation arises if the scales �9 and I are not 
fixed, but rather are variable parameters of state (resolution of a micro- 
scope). An appropriate kinematic description may be obtained using co- 
herent states or wavelet transforms (Klauder and Skagerstam, 1985). 

Now let us consider chaotic (mixing) motion of a Hamiltonian system 
or the Lorentz-type system. Formally, the motion is a family of diffeomorph- 
isms x~: X-> x(X, t) of initial positions into their images, but for t >> �9 = A-I 
(A is the Liapunov exponent) the motion completely "forgets" the initial 
data. As a result, the smallest coarse-graining destroys diffeomorphisms and 
the motion is nonholonomic rather than holonomic. 

In the case of turbulent motion of a viscous fluid, in addition to a time 
scale ~---A -1 there exists a characteristic length 1 (Kolmogorov scale). 
Typically scales of interest are much bigger than ~" and l, which justifies the 
introduction of coarse-graining and the description of motion as non- 
holonomic. In particular, in the scope of the generalized kinematics, the 



1176 Kunin 

rate of  rotation can be different from curl v. This difference is in principle 
measurable. 

We conclude that the existence of  scale parameters in mixing-type 
motions leads in a natural way to GCM. Conversely, the physical interpreta- 
tion of GCM is related to an appropriate coarse-graining. 
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